Bis-Diterpenoid Alkaloids from Aconitum tanguticum var. trichocarpum

by Zhong-Tang Zhang, Dong-Lin Chen*, Qiao-Hong Chen, and Feng-Peng Wang

Department of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan
University, No. 17, Duan 3, Renmin Nan Road, Chengdu 610041, P. R. China
(phone/fax: +86-28-5501368; e-mail: chendl@scu.edu.cn)

Abstract

Phytochemical investigation of the whole herbs of Aconitum tanguticum (Maxim.) Stapf var. trichocarpum Hand.-Mazz. led to the isolation of one heteratisine-hetidine-type bis-diterpenoid alkaloid, trichocarpidine (1), three hetidine-hetisine type bis-diterpenoid alkaloids, trichocarpinine A-C ($\mathbf{2}-\mathbf{4}$, resp.), together with nine known compounds. Their structures were elucidated by spectroscopic analyses.

Introduction. - The genus Aconitum (Ranunculaceae) comprises ca. 400 species, crude prepararations of which were popularly used in Asia, Alaska, and Europe [1]. Diterpenoid alkaloids are structurally classified as $\mathrm{C}_{18^{-}}, \mathrm{C}_{19^{-}}$, and $\mathrm{C}_{20^{-}}$-diterpenoid alkaloids, and the bis-diterpenoid alkaloids belong to C_{20}-diterpenoid alkaloids based on the new classification criteria of the C_{20}-diterpenoid alkaloids [2].

Aconitum tanguticum (Maxim.) Stapf var. trichocarpum Hand.-Mazz. is mainly distributed at an altitude of over 4000 m in the alpine meadows in Tibet of China, and characteristically contains lactone-type C_{19}-diterpenoid alkaloids and bis-diterpenoid alkaloids [3-5]. The whole herbs of this plant have been used in the traditional medicine for the treatment of pneumonia and fever. As part of our ongoing search for new and bioactive bis-diterpeniod alkaloids [6][7], we isolated new compounds $\mathbf{1}-\mathbf{4}$ together with nine known compounds, i.e., 6-acetylheteratisine [3], 6-benzoylheteratisine [8], dehydroheteratisine [8], heteratisine [8], guan-fu base Z [9], heterophyllidine [10], tangerine [4], tongolinine [11], and trichocarpinine [6].

Results and Discussion. - Trichocarpidine (1) was obtained as colorless amorphous powder. Its molecular formula, $\mathrm{C}_{43} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{6}$, was deduced from the HR-ESI-MS (m / z $\left.699.4350\left([M+\mathrm{H}]^{+}\right)\right)$. In addition to the signals of an Ac group $(\delta(\mathrm{H}) 1.95(s) ; \delta(\mathrm{C})$ $170.9(s)$ and $21.7(q))$, those for an N-Et group $(\delta(\mathrm{H}) 1.12(t, J=7.2,3 \mathrm{H}) ; \delta(\mathrm{C}) 13.0(q)$ and $48.4(t)$), two tertiary Me groups $(\delta(\mathrm{H}) 1.01,0.97(2 s$, each 3 H$) ; \delta(\mathrm{C}) 27.2$, 28.8 $(2 q))$, a trisubstituted $\mathrm{C}=\mathrm{C}$ bond $(\delta(\mathrm{H}) 5.67(s, 1 \mathrm{H}) ; \delta(\mathrm{C}) 126.9(d)$ and $145.1(s))$, a lactone group ($\delta(\mathrm{C}) 172.3(s)$), together with the signals of six quaternary C -atoms, were displayed in the NMR spectra of $\mathbf{1}$ (Table 1). Seven structural fragments were indicated by the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-COSY and HMQC experiments (Fig. 1). In the HMBC experiment, the correlations between $\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$ and $\mathrm{C}\left(11^{\prime}\right), \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$ and $\mathrm{C}\left(4^{\prime}\right)$, $\mathrm{H}-\mathrm{C}\left(17^{\prime}\right)$ and $\mathrm{C}\left(11^{\prime}\right), \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$ and $\mathrm{C}\left(4^{\prime}\right), \mathrm{H}-\mathrm{C}\left(7^{\prime}\right)$ and $\mathrm{C}\left(8^{\prime}\right), \mathrm{H}-\mathrm{C}\left(15^{\prime}\right)$ and $\mathrm{C}\left(8^{\prime}\right)$, $\mathrm{H}-\mathrm{C}\left(16^{\prime}\right)$ and $\mathrm{C}\left(13^{\prime}\right)$, identified fragment A as $\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$, fragment B as $\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$,

Heterophyllidine

Trichocarpinine $A(2) \quad R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{AcO}, \mathrm{R}^{3}=\mathrm{OH}$ Trichocarpinine B (3) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{AcO}, \mathrm{R}^{3}=\mathrm{H}$ Trichocarpinine C (4) $R^{1}=H, R^{2}=A c O, R^{3}=O H$ Trichocarpinine (5) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{OH}$

Nominine
fragment C as $\mathrm{C}\left(9^{\prime}\right), \mathrm{C}\left(10^{\prime}\right), \mathrm{C}\left(12^{\prime}\right)$, and $\mathrm{C}\left(13^{\prime}\right)$, fragment D as $\mathrm{C}(15)-\mathrm{C}(16)$, respectively. HMBCs suggested that fragment A was attached to fragments B and C via $C\left(4^{\prime}\right)$ and $C\left(11^{\prime}\right)$ respectively, fragment B to fragments C and D via $C\left(8^{\prime}\right)$, and fragment C to fragment D via $\mathrm{C}\left(13^{\prime}\right)$. Similarly, fragments $\mathrm{E}-\mathrm{G}$ were identified as $\mathrm{C}(1)-\mathrm{C}(3)$, $C(5)-C(7)$, and $C(9), C(11), C(12), C(13), C(14), C(20)$, respectively, and they were attached to each other via the quaternary C -atoms $\mathrm{C}(4), \mathrm{C}(8)$, and $\mathrm{C}(10)$. Hence, all these informations evidenced that $\mathbf{1}$ is a bis-diterpenoid alkaloid. Comparison of the ${ }^{13} \mathrm{C}$-NMR, HMQC, and DEPT data with those of the the known compound heterophyllidine led to the deduction that one moiety of $\mathbf{1}$ was a heteratisine-type alkolid. Apart from the heteratisine-type alkaloid skeleton, comparing further NMR data with those of the known compound nominine [11], we elucidated the left structure as a hetisine-type diterpenoid alkaloid. HMBCs of $\mathrm{H}-\mathrm{C}(17)$ with $\mathrm{C}\left(8^{\prime}\right), \mathrm{C}(12), \mathrm{C}(15)$, and $\mathrm{C}(16)$, and of $\mathrm{H}-\mathrm{C}(15)$ with $\mathrm{C}(9), \mathrm{C}(12)$, and $\mathrm{C}(17)$, implied that the heteratisine part was linked with the hetisine part via $\mathrm{C}\left(8^{\prime}\right)-\mathrm{O}-\mathrm{C}(17)$, and additionally asserted the presence of a trisubstituted $\mathrm{C}=\mathrm{C}$ bond. According to HMBC of $\mathbf{1}$, the AcO and OH groups should be positioned at $C(1)$ and $C(6)$ of heteratisine part, respectively. The relative configurations at the stereogenic centers of $\mathbf{1}$ were deduced from the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY correlations (Fig. 1) and corresponding correlations from the NOEDS spectrum (Fig. 2). A correlation between $\mathrm{H}-\mathrm{C}(1)$ and $\mathrm{H}_{\beta}-\mathrm{C}(10)$ in the selective NOE experiment indicated that the OH group at $\mathrm{C}(1)$ was α-oriented. No correlation between $\mathrm{H}_{\beta}-\mathrm{C}(5)$ and $\mathrm{H}-\mathrm{C}(6)$ was observed in the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$ spectrum (Fig. 1), indicating a dihedral angle of 90° between the two H -atoms, which evidenced the β orientation of the $6-\mathrm{AcO}$ group. All the available data led to the elucidation of the structure of trichocarpidine $\mathbf{1}$ as depicted.

Table 1. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR (400 and100 MHz, resp.) Data for 1 . Atom numbering as indicated in the Formulae. δ in ppm, J in Hz .

Position	$\delta(\mathrm{H})$	$\delta(\mathrm{C})$	Position	$\delta(\mathrm{H})$	$\delta(\mathrm{C})$
1	1.57-1.65 (m)	29.5 (t)	$1{ }^{\prime}$	$3.86(t, J=5.6)$	72.4 (d)
2	1.00-1.07 (m)	19.5 (t)	2^{\prime}	$\begin{aligned} & 1.70-1.78\left(m, \mathrm{H}_{\alpha}\right), \\ & 2.23-2.33\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	27.6 (t)
3	1.44-1.52 (m)	34.0 (t)	3^{\prime}	$\begin{aligned} & 0.98-1.02\left(m, \mathrm{H}_{\alpha}\right), \\ & 1.80-1.86\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	31.3 (t)
4		37.8 (s)	4^{\prime}		33.1 (s)
5	2.22-2.30 (m)	61.7 (d)	5^{\prime}	1.60-1.66 (m)	51.3 (d)
6	3.20 (s)	65.3 (d)	6^{\prime}	$5.45(d, J=7.2)$	72.0 (d)
7	0.98-1.04 (m)	33.2 (t)	$7{ }^{\prime}$	$2.83(d, J=7.2)$	44.5 (d)
8		44.6 (s)	8^{\prime}		79.2 (s)
9	1.62-1.70 (m)	31.5 (d)	$9{ }^{\prime}$	3.85-3.90 (m)	48.0 (d)
10		49.8 (s)	10^{\prime}	2.34-2.40 (m)	40.1 (d)
11	1.70-1.80 (m)	29.4 (t)	11^{\prime}		49.4 (s)
12	1.33-1.43 (m)	50.1 (d)	12^{\prime}	$\begin{aligned} & 1.02-1.10\left(m, \mathrm{H}_{\alpha}\right), \\ & 2.35-2.43\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	30.4 (t)
13	$\begin{aligned} & 1.82-1.87\left(m, \mathrm{H}_{\alpha}\right), \\ & 2.00-2.06\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	31.6 (t)	13^{\prime}	$4.82(t, J=8.0)$	74.2 (d)
14	1.70-1.78 (m)	48.5 (d)	14^{\prime}		172.3 (s)
15	5.67 (s)	126.9 (d)	15^{\prime}	$\begin{aligned} & 1.84-1.92\left(m, \mathrm{H}_{\alpha}\right), \\ & 2.03-2.08\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	34.2 (t)
16		145.1 (s)	16^{\prime}	$\begin{aligned} & 2.40-2.46\left(m, \mathrm{H}_{\alpha}\right), \\ & 2.44-2.50\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	30.6 (t)
17	$3.79-3.86$ (m)	61.3 (t)	17^{\prime}	3.41 (s)	64.2 (d)
18	1.01 (s)	27.2 (q)	18^{\prime}	0.97 (s)	28.8 (q)
19	$\begin{aligned} & 2.35-2.42\left(m, \mathrm{H}_{\alpha}\right), \\ & 2.45-2.52\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	62.8 (t)	19^{\prime}	2.42-2.50 (m)	61.5 (t)
20	2.48-2.54 (m)	73.9 (d)	20^{\prime}	2.44-2.52 (m)	48.4 (t)
AcO	1.95 (s)	170.9 (s), 21.7 (q)	21^{\prime}	$1.12(t, J=7.2)$	13.0 (q)

Fig. 1. ${ }^{1} \mathrm{H},{ }^{l} \mathrm{H}-\mathrm{COSY}(-)$ and key $\mathrm{HMB}(\mathrm{H} \rightarrow \mathrm{C})$ correlations of trichocarpidine (1)

Fig. 2. Key NOE correlations $(\mathrm{H} \leftrightarrow \mathrm{H})$ of trichocarpidine (1)

For trichocarpinine $A(2)$, the molecular formulas $\mathrm{C}_{47} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{7}$ deduced from its HR-ESI-MS. The NMR data of 2 (Table 2) were similar to those of the known compound trichocarpinine 5 [6], except an AcO group ($\delta(\mathrm{H}) 1.96(s), \delta(\mathrm{C}) 169.9(s)$, and $21.2(q))$ in $\mathbf{2}$ replaced OH group in 5, and this was supported by ESI-MS of $\mathbf{2}$ (increase by 42 amu). The AcO be at $\mathrm{C}(13)$ due to the HMBC of 2 (Fig. 3).

Fig. 3. ${ }^{1} \mathrm{H},{ }^{l} \mathrm{H}-\mathrm{COSY}(-)$ and key $\mathrm{HMB}(\mathrm{H} \rightarrow \mathrm{C})$ correlations of trichocarpinine $A(\mathbf{2})$
The relative configuration of trichocarpinine A (2) was then established by combination of its vicinal coupling constants with the key NOESY correlations (Fig. 4). The signal of $\mathrm{H}-\mathrm{C}(2)$ as a multiplet ($w_{1 / 2}=10.2$) indicated no axial-axial coupling relationship between $\mathrm{H}-\mathrm{C}(2)$ and $\mathrm{H}_{\beta}-\mathrm{C}(1)$, and $\mathrm{H}-\mathrm{C}(2)$ and $\mathrm{H}_{\beta}-\mathrm{C}(3)$, leading to the assignment of $\mathrm{H}-\mathrm{C}(2)$ as equatorial, i.e., β-oriented. The large coupling constant $(J=8.4)$ between $\mathrm{H}-\mathrm{C}(11)$ and $\mathrm{H}_{\beta}-\mathrm{C}(9)$ revealed a dihedral angle of $c a .0^{\circ}$ for these two H -atoms, which implied that $\mathrm{H}-\mathrm{C}(11)$ was β-oriented. Furthermore, a strong evidence to establish the orientation of $\mathrm{HO}-\mathrm{C}(13)$ group was the observation of a characteristic W-shape coupling between $\mathrm{H}-\mathrm{C}(11)$ and $\mathrm{H}-\mathrm{C}(13)$ in the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-COSY

Fig. 4. Key NOE correlations $(\mathrm{H} \leftrightarrow \mathrm{H})$ of trichocarpinine $A(\mathbf{2})$
Table 2. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (400 MHz and 100 MHz , resp.) Data for $\mathbf{2}$ and 5. Atom numbering as indicated in Formulae. δ in ppm, J in Hz .

Position	$\delta(\mathrm{H})$ of $\mathbf{2}$	$\delta(\mathrm{C})$		Position	$\delta(\mathrm{H})$ of $\mathbf{2}$	$\delta(\mathrm{C})$	
		2	5			2	5
1	1.66-1.74 (m, H_{α}), 3.02 (br. $d, J=16.4, \mathrm{H}_{\beta}$)	31.5 (t)	31.6 (t)	$1{ }^{\prime}$	$1.50-1.56\left(m, \mathrm{H}_{\alpha}\right), 1.74-1.80\left(m, \mathrm{H}_{\alpha}\right)$	30.8 (t)	30.8 (t)
2	5.13 (br. $s, w_{1 / 2}=10.2$)	69.7 (d)	68.7 (d)	2^{\prime}	1.50-1.60 (m)	20.5 (t)	20.6 (t)
3	1.54-1.58 (m, H_{α}), 1.79-1.83 (m, H_{β})	28.3 (t)	28.4 (t)	3^{\prime}	1.22-1.29 (m)	30.5 (t)	30.6 (t)
4		37.4 (s)	37.6 (s)	4^{\prime}		44.7 (s)	44.9 (s)
5	1.56-1.62 (m)	59.8 (d)	60.1 (d)	5		72.4 (s)	72.4 (s)
6	3.10 (s)	63.0 (d)	63.0 (d)	6^{\prime}	1.56-1.62 (m, H_{α}), 1.80-1.88 (m, H_{β})	36.7 (t)	36.9 (t)
7	1.30-1.36 (m)	31.8 (t)	31.3 (t)	$7{ }^{\prime}$	$1.39-1.44\left(m, \mathrm{H}_{\alpha}\right), 1.50-1.57\left(m, \mathrm{H}_{\beta}\right)$	27.5 (t)	27.7 (t)
8		44.9 (s)	44.2 (s)	8^{\prime}		43.6 (s)	43.8 (s)
9	2.00-2.06 (m)	52.5 (d)	52.2 (d)	$9{ }^{\prime}$	1.60-1.66 (m)	46.9 (d)	47.0 (d)
10		46.0 (s)	46.2 (s)	10^{\prime}		45.2 (s)	45.3 (s)
11	3.76 (s)	81.0 (d)	82.1 (d)	11^{\prime}	1.34-1.42 (m, H_{α}), 1.78-1.84 (m, H_{β})	43.1 (t)	43.2 (t)
12	2.84 (s)	44.6 (d)	48.6 (d)	12^{\prime}	2.09 (br. s)	31.6 (d)	31.8 (d)
13	4.93 (s)	80.8 (d)	79.8 (d)	13^{\prime}	$1.50-1.56\left(m, \mathrm{H}_{\alpha}\right), 1.76-1.82\left(m, \mathrm{H}_{\beta}\right)$	30.9 (t)	31.9 (t)
14		78.6 (s)	80.1 (s)	14^{\prime}	1.60-1.66 (m)	44.2 (d)	44.3 (d)
15	1.99-2.02 (m, H_{α}), 2.14 (br. s)	30.9 (t)	31.0 (t)	15^{\prime}	5.43 (s)	129.9 (d)	130.9 (d)
16		143.8 (s)	144.7 (s)	16^{\prime}		147.2 (s)	146.7 (s)
17	4.72 (s), 4.93 (s)	109.2 (t)	108.1 (t)	17^{\prime}	3.74, 3.92 ($A B q, J=12.4$)	69.9 (t)	70.3 (t)
18	0.96 (s)	29.5 (q)	29.7 (q)	18^{\prime}	1.00 (s)	18.9 (q)	19.0 (q)
19	2.51, 2.83 ($A B q, J=11.6)$	62.6 (t)	62.9 (t)	19^{\prime}	7.36 (s)	169.5 (d)	169.5 (d)
20	3.43 (s)	69.5 (d)	68.8 (d)	20^{\prime}	3.49 (s)	80.2 (d)	80.4 (d)
1 "		175.7 (s)	175.7 (s)	AcO	1.96 (s)	169.9 (s)	
$2^{\prime \prime}$	2.24-2.29 (m)	41.3 (d)	41.5 (d)				
3 "	1.59-1.64 (m)	26.2 (t)	26.5 (t)				
$4{ }^{\prime \prime}$	0.85 ($t, J=7.2)$	11.5 (q)	11.6 (q)				
5"	1.13 ($d, J=7.2)$	16.5 (q)	16.6 (q)				

spectrum. It was, therefore, concluded that the $\mathrm{H}-\mathrm{C}(13)$ had to be β-oriented to retain the W-shape coupling with $\mathrm{H}-\mathrm{C}(11)$. As a result, the substituents at $\mathrm{C}(2), \mathrm{C}(11)$, and $\mathrm{C}(13)$ were all α-oriented. All the key NOESY correlations were observed as shown in Fig. 4. Accordingly, the structure of trichocarpinine A (2) was established as depicted.

For trichocarpinines B and C ($\mathbf{3}$ and $\mathbf{4}$, resp.), molecular formulae $\mathrm{C}_{47} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{6}$ and $\mathrm{C}_{46} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{7}$ were determined by HR-ESI-MS, respectively. The NMR data of $\mathbf{3}$ (Table 3) were very similar to those of (2) except that a CH group ($\delta(\mathrm{C}) 44.2$) replaced on oxgenated quaternary C -atom $(\delta(\mathrm{C}) 78.6)$ in $\mathbf{2}$. The CH group C -atom was assigned as $\mathrm{C}(14)$, since a correlation of $\mathrm{H}-\mathrm{C}(14)$ to $\mathrm{C}(9), \mathrm{C}(10), \mathrm{C}(13)$, and $\mathrm{C}(20)$ was observed in HMBC (Fig. 5). The AcO group was located at $\mathrm{C}(13)$ on the basis of correlations shown in Fig. 5. Therefore, the structure of trichocarpinine B (3) was established as depicted.

The NMR and HR-ESI-MS data of $\mathbf{4}$ were similar to those of $\mathbf{2}$, except that $\mathbf{4}$ displayed 14 amu less than 2 (Table 4). The triplet at $\delta(\mathrm{H}) 0.89(J=7.2,3 \mathrm{H})$) observed

Table 3. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (400 MHz and 100 MHz , resp.) Data for 3 . Atom numbering as indicated in Formulae. δ in ppm, J in Hz .

Position	$\delta(\mathrm{H})$	$\delta(\mathrm{C})$	Position	$\delta(\mathrm{H})$	$\delta(\mathrm{C})$
1	$\begin{aligned} & 1.66-1.74\left(m, \mathrm{H}_{\alpha}\right), \\ & \left.3.08 \text { (br. } d, J=16.4, \mathrm{H}_{\beta}\right) \end{aligned}$	$31.5(t)$	1^{\prime}	$\begin{aligned} & 1.79-1.84\left(m, \mathrm{H}_{\alpha}\right), \\ & 1.84-1.88\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	30.8 (t)
2	5.18 (br. $s, w_{1 / 2}=10.2$)	69.8 (d)	2^{\prime}	1.50-1.60 (m)	20.5 (t)
3	$\begin{aligned} & 1.50-1.58\left(m, \mathrm{H}_{\alpha}\right), \\ & 1.70-1.80\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	28.2 (t)	3 4^{\prime}	1.65-1.74 (m)	$\begin{aligned} & 30.5(t) \\ & 44.8(s) \end{aligned}$
4		36.5 (s)	5^{\prime}		72.2 (s)
5	1.54-1.62 (m)	61.3 (d)	$6{ }^{\prime}$	1.62-1.68 (m, H_{α}),	36.7 (t)
6	3.23 (s)	64.1 (d)		$1.80-1.86\left(m, \mathrm{H}_{\beta}\right)$	
7	$\begin{aligned} & 1.47-1.53\left(m, \mathrm{H}_{\alpha}\right), \\ & 1.60-1.68\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	36.1 (t)	$7{ }^{\prime}$	$\begin{aligned} & 1.43-1.50\left(m, \mathrm{H}_{\alpha}\right) \\ & 1.50-1.57\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	27.5 (t)
8		43.7 (s)	8^{\prime}		43.6 (s)
9	1.97-2.05 (m)	54.0 (d)	9^{\prime}	1.60-1.65 (m)	46.9 (d)
10		50.3 (s)	10^{\prime}		45.2 (s)
11	3.80 (s)	81.3 (d)	11^{\prime}	1.40-1.50 $\left(m, \mathrm{H}_{\alpha}\right)$,	43.1 (t)
12	2.75 ($d, J=2.4$)	43.1 (d)		1.84-1.90 (m, H ${ }_{\beta}$)	
13	5.06 ($d d, J=9.6,2.4$)	73.5 (d)	12^{\prime}	2.01 (br. s)	31.6 (d)
14	2.20-2.28 (m)	49.9 (d)	13^{\prime}	$\begin{aligned} & 1.50-1.56\left(m, \mathrm{H}_{\alpha}\right), \\ & 1.76-1.82\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	30.6 (t)
15	1.99-2.02 (m, H_{α}),	33.9 (t)	14^{\prime}	1.57-1.63 (m)	44.2 (d)
	2.09 (br. s, H_{β})		15^{\prime}	5.48 (s)	129.7 (d)
16		144.7 (s)	16^{\prime}		147.3 (s)
17	4.73 (s), 4.94 (s)	108.8 (t)	17^{\prime}	3.78, $3.94(A B q, J=12.0)$	69.9 (t)
18	0.99 (s)	29.4 (q)	18^{\prime}	1.04 (s)	18.9 (q)
19	2.52, 2.93 ($A B q, J=12.4$)	63.2 (t)	19^{\prime}	7.41 (s)	169.5 (d)
20	3.54 (s)	68.5 (d)	20^{\prime}	3.54 (s)	80.2 (d)
$1{ }^{\prime \prime}$		175.7 (s)	AcO	1.98 (s)	170.3 (s), 21.3 (q)
$2^{\prime \prime}$	2.20-2.28 (m)	41.3 (d)			
$3^{\prime \prime}$	1.59-1.65 (m)	26.2 (t)			
$4^{\prime \prime}$	$0.89(t, J=7.2)$	11.5 (q)			
$5^{\prime \prime}$	$1.17(d, J=6.8)$	16.5 (q)			

Fig. 5. ${ }^{1} \mathrm{H},{ }^{l} \mathrm{H}-\mathrm{COSY}(-)$ and key $\mathrm{HMB}(\mathrm{H} \rightarrow \mathrm{C})$ correlations of trichocarpinine $B(\mathbf{3})$
in the ${ }^{1} \mathrm{H}$-NMR spectrum disappeared, and two doublets at $\delta(\mathrm{H}) 1.16(J=6.8)$ and 1.20 $(J=7.2$, each 3 H$)$) emerged in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 4 , indicating the 2 methylbutanoyloxy group in 2 was replaced by an isobutanoyloxy group in $\mathbf{4}$, which could be confirmed by the correlation $\mathrm{H}-\mathrm{C}(2) / \mathrm{C}\left(2^{\prime \prime}\right)$ in HMBC of $\mathbf{4}$ (Fig. 6). Thus the trichocarpinine C (4) was deduced as depicted.

Fig. 6. ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-COSY $(-)$ and key $\mathrm{HMB}(\mathrm{H} \rightarrow \mathrm{C})$ correlations of trichocarpinines C (4)

Experimental Part

General. TLC and column chromatography (CC): silica gel G and H, resp. (SiO_{2}; Qingdao Haiyang Chemical Group Co., P. R. China), The spots on TLC were visualized by using the modified Dragendorff's reagent. Optical rotations: Perkin-Elmer 241 polarimeter. IR Spectra: Nicolet FT-IR 200 $S X V$ spectrophotometer; \tilde{v} in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra: Varian Unity INOVA $400 / 45 \mathrm{NMR}$ spectrometer; in $\mathrm{CDCl}_{3} ; \delta$ in ppm rel. to $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard, J in Hz. ESI-MS and HR-ESI-MS: $V G$ Auto Spec 3000 or a Finnigan-MAT 90 instrument; in m / z.

Plant Material: The whole herbs of A. tanguticum var. trichocarpum were collected in Naqu County, Tibet, P. R. China, in August 2009. The plant was identified by Assoc. Prof. S. Ge Sang at the Tibet Institute for Food and Drug Control, where a voucher specimen (No. 005612) has been deposited.

Extraction and Isolation. Air-dried and powdered whole herbs (5 kg) were percolated with 0.1 m HCl (100 1). The acidic soln. was alkalized with 10% aq. $\mathrm{NH}_{4} \mathrm{OH}(500 \mathrm{ml})$ to $\mathrm{pH}>10$ and then was extracted with $\mathrm{AcOEt}(251 \times 3)$. The combined extracts were concentrated to yield the total crude alkaloids (42 g), which were subjected to $\mathrm{CC}\left(\mathrm{SiO}_{2} H(500 \mathrm{~g}) ; \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{NH} 100: 0: 1-0: 100: 1\right)$ to give 5 fractions: Fr. I (6.0 g), Fr. II (6.5 g), Fr. III (2.2 g), Fr. IV (1.8 g), and Fr. V (16.5 g).

Fr. I afforded three parts, $A(0.51 \mathrm{~g}), B(0.35 \mathrm{~g})$, and $C(1.65 \mathrm{~g})$, by $\mathrm{CC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{NH}\right.$ $100: 1: 1$). The part A was separated by CC (petroleum ether (PE)/acetone $10: 1$) to yield dehydroheteratisine. Part B was subjected to $\mathrm{CC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{NH}(100: 1: 1)\right.$ to afford 6benzoylheteratisine $(98 \mathrm{mg})$. CC of Part $C\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{NH} 150: 1: 1-100: 1: 1\right)$ gave Frs. C-1

Table 4. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR (400 MHz and 100 MHz , resp.) Data for 4. Atom numbering as indicated in Formulae. δ in ppm, J in Hz .

Position	$\delta(\mathrm{H})$	$\delta(\mathrm{C})$	Position	$\delta(\mathrm{H})$	$\delta(\mathrm{C})$
1	1.69-1.78 (m, H_{α}),	31.5 (t)	1^{\prime}	1.53-156 (m, H $)$),	30.8 (t)
	3.05 (br. $d, J=16.0, \mathrm{H}_{\beta}$)			1.68-1.77 (m, H_{β})	
2	5.17 (br. $s, w_{1 / 2}=10.2$)	69.7 (d)	2^{\prime}	1.58-1.62 (m)	20.5 (t)
3	$\begin{aligned} & 1.53-1.56\left(m, \mathrm{H}_{\alpha}\right), \\ & 1.79-1.83\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	28.3 (t)	$3^{\prime}$$4^{\prime}$	1.25-1.29 (m)	30.5 (t)
					44.7 (s)
4		37.4 (s)	5		72.4 (s)
5	1.58-1.62 (m)	59.8 (d)	6^{\prime}	1.59-1.64 (m, H_{α}),	36.7 (t)
6	3.13 (s)	63.0 (d)		1.84-1.88 (m, H_{β})	
7	1.28-1.32 (m)	31.8 (t)	7^{\prime}	1.41-1.49 ($\left.m, \mathrm{H}_{\alpha}\right)$,	$27.5(t)$
8		44.9 (s)		$1.50-1.57\left(m, \mathrm{H}_{\beta}\right)$	
9	2.03-2.05 (m)	52.5 (d)	8^{\prime}		43.6 (s)
10		46.0 (s)	9^{\prime}	1.62-1.66 (m)	46.9 (d)
11	3.77 (s)	81.0 (d)	10^{\prime}		45.2 (s)
12	2.87 (s)	44.6 (d)	11^{\prime}	1.35-1.38 $\left(m, \mathrm{H}_{\alpha}\right)$,	43.1 (t)
13	4.96 (s)	80.8 (d)		$1.81-1.83\left(m, \mathrm{H}_{\beta}\right)$	
14		78.6 (s)	12^{\prime}	2.12 (br. s)	31.6 (d)
15	$\begin{aligned} & 2.03-2.05\left(m, \mathrm{H}_{\alpha}\right), \\ & 2.12\left(\text { br. } s, \mathrm{H}_{\beta}\right) \end{aligned}$	30.9 (t)	13^{\prime}	$\begin{aligned} & 1.53-1.56\left(m, \mathrm{H}_{\alpha}\right), \\ & 1.77-1.81\left(m, \mathrm{H}_{\beta}\right) \end{aligned}$	30.9 (t)
16		143.8 (s)	14^{\prime}	1.60-1.65 (m)	44.2 (d)
17	4.75 (s), 4.96 (s)	109.2 (t)	15^{\prime}	5.46 (s)	129.9 (d)
18	1.00 (s)	29.5 (q)	16^{\prime}		147.2 (s)
19	2.54, $2.89(A B q, J=12.4)$	62.6 (t)	17^{\prime}	3.77, 3.93 ($A B q, J=12.0)$	69.9 (t)
20	3.46 (s)	69.5 (d)	18^{\prime}	1.04 (s)	18.9 (q)
$1{ }^{\prime \prime}$		176.0 (s)	19^{\prime}	7.40 (s)	169.5 (d)
$2^{\prime \prime}$	$2.49(q, J=6.8)$	34.2 (d)	20^{\prime}	3.53 (s)	80.2 (d)
$3^{\prime \prime}$	$1.15(d, J=6.8)$	18.6 (q)	AcO	1.96 (s)	169.9 (s), 21.2 (q)
$5^{\prime \prime}$	$1.19(d, J=6.8)$	19.3 (q)			

$(800 \mathrm{mg}), C-2(320 \mathrm{mg})$, and $C-3(1.05 \mathrm{~g})$. Further separation of fraction $C-3$ by $\mathrm{CC}\left(\mathrm{PE} /\right.$ acetone $^{2} / \mathrm{Et}_{2} \mathrm{NH}$ $5: 1: 0.05)$ yielded $2(40 \mathrm{mg})$ and $4(58 \mathrm{mg})$. Separation of Fr. II by CC (PE/AcOEt $1: 1-1: 3)$ afforded dehydroheteratisine $(85 \mathrm{mg})$, tongolinine $(40 \mathrm{mg})$, heteratisine $(1.10 \mathrm{~g})$, and subfraction Fr. II-1 (1.21 g). Compound $3(50 \mathrm{mg})$ was obtained from Fr. II-1 by CC (PE/acetone/Et $\left.{ }_{2} \mathrm{NH} 5: 1: 0.05\right)$. Fr. III was separated by CC to yield Frs. III-1 $(1.44 \mathrm{~g})$ and III-2 $(1.02 \mathrm{~g})$. Further purification of Frs. III-1 and III-2 by $\mathrm{CC}\left(\mathrm{PE} /\right.$ acetone $\left./ \mathrm{Et}_{2} \mathrm{NH} 5: 1: 0.05\right)$ provided trichocarpine $\mathrm{A}(45 \mathrm{mg})$, heterophyllidine (96 mg), and $\mathbf{1}$ (78 mg) . Fr. IV was submitted to CC (PE/acetone $5: 1$) to yielded heteratisine (38 mg) and Frs. IV-1 $(210 \mathrm{mg})$ and $I V-2(400 \mathrm{mg})$. Further CC of $\mathrm{Fr} . I V-2\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 200: 1\right)$ afforded 6-acetylheteratisine $(50 \mathrm{mg}), 6$-benzoylheteratisine $(13 \mathrm{mg})$. Frs. $V-1(2.0 \mathrm{~g})$ and $V-2(5.5 \mathrm{~g})$ were obtained from $F r . V$ by CC (PE/AcOEt $2: 1-0: 1$). Guan-fu base Z $(55 \mathrm{mg})$ was obtained from Fr . $V-2$ by CC (PE/acetone 7:12:1).

Trichocarpidine (= (1S,2R,3S,6S,9S,10S,11R,14R,17S,18R,19S)-12-Ethyl-17-hydroxy-14-methyl-9$\left\{\left[(1 \mathrm{R}, 5 \mathrm{R}, 8 \mathrm{R}, 9 \mathrm{~S}, 11 \mathrm{R}, 14 \mathrm{~S}, 16 \mathrm{~S}, 17 \mathrm{R}, 18 \mathrm{R})-5-\right.\right.$ methyl-7-azaheptacyclo[9.6.2.0 $\left.0^{1,8} \cdot 0^{5,17} \cdot 0^{7,16} \cdot 0^{9,14} \cdot 0^{14,18}\right]$ nonadec-12-en-12-yl]methoxy\}-4-oxo-5-oxa-12-azahexacyclo[8.7.2.1 ${ }^{2,6} .0^{1,11} .0^{3,9} .0^{14,18}$]icos-19-yl Acetate; 1). White amorphous powder. $[\alpha]_{\mathrm{D}}^{20}=+68.6\left(c=0.86, \mathrm{CHCl}_{3}\right)$. IR $(\mathrm{KBr}): 3436,2929,1738,1249 .{ }^{1} \mathrm{H}-(400 \mathrm{MHz}$, CDCl_{3}) and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$: see Table 1. ESI-MS: $699.57\left([M+\mathrm{H}]^{+}\right)$. HR-ESI-MS: $699.4350\left([M+\mathrm{H}]^{+}, \mathrm{C}_{43} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{6}^{+}\right.$; calc. 699.4358) .

Trichocarpinine $A(=(1 \mathrm{~S}, 3 \mathrm{~S}, 5 \mathrm{R}, 8 \mathrm{~S}, 9 \mathrm{~S}, 10 \mathrm{R}, 11 \mathrm{R}, 14 \mathrm{R}, 16 \mathrm{~S}, 17 \mathrm{R}, 18 \mathrm{~S}, 19 \mathrm{~S})-10-($ Acetyloxy)-9-hydroxy-19$\left\{\left[(1 \mathrm{~S}, 5 \mathrm{~S}, 8 \mathrm{R}, 9 \mathrm{R}, 11 \mathrm{R}, 14 \mathrm{~S}, 17 \mathrm{R}, 18 \mathrm{R})\right.\right.$-17-hydroxy-5-methyl-7-azahexacyclo[9.6.2.0 $\left.0^{1,8} \cdot 0^{5,17} \cdot 0^{9,14} \cdot 0^{14,18}\right]$ nonade-ca-6,12-dien-12-yl]methoxy]-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2. $0^{1,8} \cdot 0^{5,17} \cdot 0^{7,16} \cdot 0^{9,14} \cdot 0^{14,18}$]nona-dec-3-yl 2-Methylbutanoate; 2). White amorphous powder. $[\alpha]_{\mathrm{D}}^{20}=+169.8\left(c=1.16, \mathrm{CHCl}_{3}\right)$. IR (KBr): 3421, 2932, 1728, 1238. ${ }^{1} \mathrm{H}-\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz} . \mathrm{CDCl}_{3}\right)$: see Table 2. ESI-MS: $767.44\left([M+\mathrm{H}]^{+}\right)$. HR-ESI-MS: $767.4614\left([M+\mathrm{H}]^{+}, \mathrm{C}_{47} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{7}^{+}\right.$; calc. 767.4628).

Trichocarpinine $B(=(1 \mathrm{~S}, 3 \mathrm{~S}, 5 \mathrm{R}, 8 \mathrm{~S}, 9 \mathrm{~S}, 10 \mathrm{R}, 11 \mathrm{R}, 14 \mathrm{R}, 16 \mathrm{~S}, 17 \mathrm{R}, 18 \mathrm{~S}, 19 \mathrm{~S})-10-($ Acetyloxy $)-19-\{[(1 \mathrm{~S}, 5 \mathrm{~S}$, 8R,9R,11R,14S,17R,18R)-17-hydroxy-5-methyl-7-zahexacyclo[9.6.2.0 $\left.0^{1,8} \cdot 0^{5,17} \cdot 0^{9,14} \cdot 0^{14,18}\right]$ nonadeca-6,12-di-en-12-yl]methoxy]-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0 ${ }^{1,8} \cdot 0^{5,17} \cdot 0^{7,16} \cdot 0^{9,14} \cdot 0^{14,18}$ nonadec-3-yl 2Methylbutanoate; 3). White amorphous powder. $[\alpha]_{\mathrm{D}}^{20}=+164.1\left(c=1.2, \mathrm{CHCl}_{3}\right)$. IR (KBr): 3424, 2932, 1728, 1645, 1242. ${ }^{1} \mathrm{H}-\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: see Table 3. ESI-MS: $751.52\left([M+\mathrm{H}]^{+}\right)$. HR-ESI-MS: $751.4689\left([M+\mathrm{H}]^{+}, \mathrm{C}_{47} \mathrm{H}_{63} \mathrm{~N}_{2} \mathrm{O}_{6}^{+}\right.$; calc. 751.4696).

Trichocarpinine $C(=(1 \mathrm{~S}, 3 \mathrm{~S}, 5 \mathrm{R}, 8 \mathrm{~S}, 9 \mathrm{~S}, 10 \mathrm{R}, 11 \mathrm{R}, 14 \mathrm{R}, 16 \mathrm{~S}, 17 \mathrm{R}, 18 \mathrm{~S}, 19 \mathrm{~S})-10-($ Acetyloxy)-9-hydroxy-19-\{[(1S,5S,8R,9R,11R,14S,17R,18R)-17-hydroxy-5-methyl-7-zahexacyclo[9.6.2.0 $\left.0^{1,8} \cdot 0^{5,17} \cdot 0^{9,14} \cdot 0^{14,18}\right]$ nonade-ca-6,12-dien-12-yl]methoxy]-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.0 $\left.0^{1,8} \cdot 0^{5,17} \cdot 0^{7,16} \cdot 0^{9,14} \cdot 0^{14,18}\right]$ nona-dec-3-yl 2-Methylpropanoate; 4). White amorphous powder. $[\alpha]_{\mathrm{D}}^{20}=+182.1\left(c=1.12, \mathrm{CHCl}_{3}\right) . \mathrm{IR}(\mathrm{KBr})$: 3421, 2932, 1727, $1240 .{ }^{1} \mathrm{H}-\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: see Table 4. ESI-MS: $753.36\left([M+H]^{+}\right)$. HR-ESI-MS: $753.4476\left([M+H]^{+}, \mathrm{C}_{46} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{7}^{+}\right.$; calc. 753.4491).

This work was financially supported by the National Science Foundation of P. R. China (No. 81072550).

REFERENCES

[1] W.-C. Wang, M. Warnock, in 'Flora of China', Eds. Z.-Y. Wu, P. Raven, D.-Y. Hong, Science Press, Beijing, 2001, p. 273.
[2] F.-P. Wang, X.-T. Liang, in 'The Alkaloids: Chemistry and Biology', Ed. G. A. Cordell, Elesvier Science, New York, 2002, Vol. 59, pp. 1-280.
[3] H. K. Desai, S. W. Pelletier, J. Nat. Prod. 1993, 56, 2193.
[4] B. S. Joshi, Y. Bai, D. H. Chen, S. W. Pelletier, Tetrahedron Lett. 1993, 34, 7525.
[5] P.-G. Xiao, F.-P. Wang, F. Gao, L.-P. Yan, D.-L. Chen, Y. Liu, Acta Phytotaxon. Sin. 2006, 44, 1.
[6] L. Lin, D.-L. Chen, X.-Y. Liu, Q.-H. Chen, F.-P. Wang, Helv. Chim. Acta 2010, 93, 118.
[7] L. Lin, D.-L. Chen,X.-Y. Liu, Q.-H. Chen, F.-P. Wang, C.-Y. Yang, Nat. Prod. Commum. 2009, 4, 897.
[8] R. Aneja, S. W. Pelletier, Tetrahedron Lett. 1965, 6, 215.
[9] M. G. Reinecke, W. H. Watson, D. C. Chen, W. M. Yan, Heterocycles 1986, 24, 49.
[10] S. W. Pelletier, R. Aneja, Tetrahedron Lett. 1967, 8, 557.
[11] L. He, Y.-Z. Chen, L.-S. Ding, B.-G. Li, Chin. Chem. Lett. 1996, 7, 557.

